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Abstract

We investigate the identifiability of the climate by limited proxy data. We test a data as-
similation approach through perfect model pseudoproxy experiments, using a simple
likelihood-based weighting based on the particle filtering process. Our experimental
set-up enables us to create a massive 10 000-member ensemble at modest computa-5

tional cost, thus enabling us to generate statistically robust results. We find that the
method works well when data are sparse and imprecise, but in this case the recon-
struction has a rather low accuracy as indicated by residual RMS errors. Conversely,
when data are relatively plentiful and accurate, the estimate tracks the target closely, at
least when considering the hemispheric mean. However, in this case, our prior ensem-10

ble size of 10 000 appears to be inadequate to correctly represent the true posterior,
and the regional performance is poor. Using correlations to assess performance gives
a more encouraging picture, with significant correlations ranging from about 0.3 when
data are sparse to values over 0.7 when data are plentiful, but the residual RMS errors
are substantial in all cases. Our results imply that caution is required in interpreting15

climate reconstructions, especially when considering the regional scale, as skill on this
basis is markedly lower than on the large scale of hemispheric mean temperature.

1 Introduction

Reconstructions of climate variation over recent centuries make an important contribu-
tion to our understanding of climate change, and in particular help us to place the recent20

anthropogenically-forced changes in the context of natural variability. Therefore, it is
important that we have a sound understanding of the reliability and precision of these
reconstructions. Prior to the recent instrumentally-observed interval (from around 1850
to the present day), direct measurements of climatic variables are not generally avail-
able, and therefore the primary sources of data are a number of proxy measurements of25

various types, with tree-rings being one of the best-known. Compared to the modern
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observational network, these proxy data are extremely limited, with there being typ-
ically tens to hundreds of observations (each representing a seasonal or annual av-
erage value) available globally during a single year. Numerous reconstructions have
been presented for the mean temperature of the Northern Hemisphere, where proxies
are most numerous (e.g. Jansen et al., 2007, Fig. 6.10), and rather less commonly5

for global temperature. Most existing reconstructions are based on primarily statistical
methods, in which a linear regression is used to relate the proxy data to the climate
variable of interest. This synopsis, however, neglects a wide range of details that dif-
fer across methods and which continue to be heavily investigated and debated (e.g.
Christiansen et al., 2009, 2010; Rutherford et al., 2010; Smerdon et al., 2012).10

More recently, an alternative approach to climate reconstruction has been devel-
oped, in which the proxy data are assimilated into a climate model, generating what
is generally referred to as a “reanalysis” of the climate state (Goosse et al., 2006;
Widmann et al., 2010). In principle, such an approach could have several notable
advantages over a purely statistical method. By using a dynamical model, physical re-15

lationships between climatic variables, including unobserved variables, can be directly
generated from physical laws, rather than having to be inferred from limited noisy data
or approximated via statistical relationships. An additional benefit arises from the tem-
poral relationships embodied in the model: an estimate of the climate state at a given
time can be enhanced by data observed both before the synoptic time (as in filtering20

methods) and even from data observed after this time. Such an approach is known
as smoothing, but note that this does not refer to a simple smoothing filter such as
a moving average, but rather the transfer of information through time according to the
physical laws embedded in the model. In practice, however, the temporal influence of
data is limited by the predictability time scale of the system. Regression-based meth-25

ods do not usually account for this effect at all, with the estimate for a particular year
relying purely on the proxy data associated with that time.

However, data assimilation methods also have many practical limitations. Per-
haps most prominently, the computational costs may be large. Attempts to reduce
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the computational load typically require simplifying assumptions and approximations,
which may reduce the accuracy of the results. Moreover, climate models have sig-
nificant imperfections, such that the dynamical relationships that they impose on the
results may not be good representations of the behaviour of the real climate system.
Nevertheless, the exciting potential of such methods certainly justifies investigation into5

their strengths and weaknesses.
In this paper, we consider the potential of data assimilation methods to generate ac-

curate reconstructions using limited observations. We use a particle-based approach,
although the use of a formally optimal methodology and massive ensemble means that
some of our conclusions must apply more generally to all Bayesian estimation meth-10

ods. We have two main goals. Primarily, we investigate the precision with which it is
possible to estimate the hemispheric climatic state with limited observations. Further,
we also consider the viability of particle-based methods (in particular, in respect of the
required ensemble size) to undertake this task. Our investigations are complementary
to those of Dubinkina et al. (2012) who used a more extensive data set based on the15

recent observational period. We adopt an identical twin paradigm, in which pseudo-
proxy observations are generated from a model run (Smerdon, 2011), so as to focus
specifically on the methodological aspects and theoretical performance limits.

2 Model and data

This work is based on a 101 member, 140 yr integration of the Earth system model of20

intermediate complexity, LOVECLIM (Renssen et al., 2005). The essential features of
this model for our purposes are that, in contrast to simpler energy-balance models, it
plausibly simulates the chaotic internal variability of coupled atmosphere/ocean/sea-
ice system, while (unlike state-of-the-art GCMs) remaining computationally efficient
enough for long-term ensemble integrations to be practical. For the pseudoproxy data,25

we base this on the screened proxy network assembled by Mann et al. (2008), which
has been previously used for data assimilation experiments with the LOVECLIM model
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by Goosse et al. (2010). As in that work (and most previous temperature reconstruc-
tions over the past millennium), we focus on the Northern Hemisphere where the proxy
data are most plentiful. Figure 2 shows the locations of data which we use, illustrating
how the density of proxies changes over time. Note that the proxy locations here are
shown after binning to the model grid. In the original data set there may have been5

multiple records within a single grid cell. Table 1 presents the change in data availabil-
ity over time, which rises from only 6 locations where data are available for the full time
span years, to 112 for the last 500 yr.

Given the sparse nature of the proxy network, one fundamental task of the data
assimilation process, which underpins the generation of a hemispheric or global mean10

temperature anomaly, is spatial interpolation. As a first check and demonstration of the
viability of the process, therefore, we consider the spatial coherence of temperature
anomalies, and explore how this compares to the sparsity of the data. Figure 1 shows
the spatial correlation structure of anomalies at the location of each of the 6 longest
proxy data series in turn. All the coloured regions are highly statistically significant.15

In fact, with our large sample size, the threshold for significance at the 5 % level is
a correlation of magnitude around 0.05, but such low values are of little practical value
and therefore have been left blank. Around each location there is an approximate
“bullseye” of high correlation, the precise shape and size of which varies across the
globe but which appear roughly compatible with the O (1200 km) smoothing radius20

used in some observational analyses (Hansen and Lebedeff, 1987).
As a further test of the model, we check its potential predictability over the multian-

nual time scale. To do this we follow the approach of Boer and Lambert (2008) and
calculate the extent to which the variance of k-year means contributes to the total vari-
ance, in excess of that which would be expected if the annual temperature anomalies25

were serially uncorrelated white noise. Figure 2 shows the potential predictability for
intervals ranging from 2 to 20 yr. This compares extremely well with Fig. 4 of Boer
and Lambert (2008) in which several of the CMIP3 models were analysed. This anal-
ysis suggests that there may be some potential for the estimate of the climate state
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in a given year to be improved with observations from adjacent years (as could be
achieved with filtering or smoothing methods from data assimilation). However it must
be noted that the potential predictability is highest over the ocean areas, whereas the
data are primarily restricted to the land.

3 Method5

The fundamental basis of almost all data assimilation is the application of Bayes’ The-
orem to update a prior estimate in the light of observational evidence, thereby form-
ing a posterior estimate. The core of our approach is the simple likelihood weight-
ing algorithm which underpins the particle filter (Arulampalam et al., 2002). In this
method, in order to estimate the climate state for a given year, samples are drawn10

from the prior, and then each sample is weighted according to a likelihood function
which depends on the fit of the sample to the specific observations available. In the
common case of Gaussian uncertainties on each observation, the weight is defined
by the familiar exponential exp(−C) in which C is the quadratic cost function C(M,O)=
0.5× (M−O)TΣ−1(M−O) where M is the vector of modelled outputs corresponding to15

the observations O, and Σ is the covariance matrix of observational errors. In this work,
we use the standard assumption that observational errors are independent, simplifying
the cost function to the sum of diagonal terms C(M,O)=0.5×

∑
i ((mi −oi )/σi )

2.
After normalising the weights so that they sum to unity over the ensemble, statistics

of interest such as posterior mean and variance are easily calculated from the weighted20

ensemble. In principle, this ensemble can then be used as the prior for the subsequent
year, and integrated forwards in time. However, given the limited predictability of the
system, an alternative approach, as used by Bhend et al. (2011), is to simply revert
to the climatological prior for each individual year. We initially follow this procedure,
and consider the potential of the more conventional sequential approach later. One25

benefit of this approach is that the entire assimilation can be performed off-line, after
the ensemble integration has been completed. This also enables us to investigate the
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effects of changing various details of the procedure (such as observational density and
accuracy) at little additional computational cost.

All models were initialised by making small perturbations to a long equilibrium in-
tegration, with the first 20 yr discarded as a spin-up phase. External forcing is held
constant, so the ensemble samples the internal variability of the model. We consider5

the case of an externally-forced response in Sect. 4.3. The use of unforced simulations
allows us to treat all model years exchangeably, and thus the ensemble size for the
prior is 10 000 (albeit the temporal correlation revealed in the potential predictability
analysis results in a slightly smaller effective sample size), which is far greater than
would be practical otherwise.10

One model run at a time is used as the truth, with the remaining ensemble of 100
integrations of 100 yr used for the prior. We generate pseudoproxies from the “truth”
run, by adding random noise to the model outputs at the appropriate gridpoints. For the
standard case we use white noise with a magnitude of 2.5 times the standard deviation
of annual temperatures at that location, which results in a “signal to noise ratio” of 0.4,15

in line with the bulk of the paleoclimate literature (e.g. Mann et al., 2008; Smerdon
et al., 2012) and elsewhere in the paleoclimate literature. We note for the avoidance
of confusion that the usage of the phrase “signal to noise ratio” in the paleoclimate
literature, also adopted here, differs slightly from the engineering literature where it
originates, in that for the latter, the ratio is generally defined in terms of power (i.e.20

variance), and thus amounts to the square of the paleoclimatic convention.
We emphasise that the likelihood weighting method, although simple, actually pro-

vides an exact solution to Bayes’ Theorem in the limit of infinite ensemble size. Its
only disadvantage – albeit an overwhelming one in many cases – is its requirement for
a large ensemble, as its efficiency is rather low. The problem is that in many practical25

applications, the weights will be concentrated on a small proportion of the ensem-
ble (sometimes vanishingly small), which can lead to large sampling error (Bengtsson
et al., 2008; Snyder et al., 2008). However, when the ensemble size is adequate –
a point which we investigate in Sect. 4 – the method generates the correct, optimal
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solution to the estimation problem, that cannot be bettered by a more sophisticated
algorithm, be it an ensemble-based method such as the Ensemble Kalman Filter or
other particle filtering, variational or optimal-interpolation based methods. Simply put,
the likelihood-based weighting correctly generates the full probabilistic posterior (in-
cluding its uncertainty) arising from a given prior and likelihood function.5

4 Experiments and results

4.1 Reconstruction of hemispheric mean temperature and spatial pattern

As mentioned above, we first consider the case of unforced internal variability. We
focus on results from 4 epochs, which cover a wide range of data densities; 500–
599 AD (8 gridpoints), 1000–1099 AD (16 gridpoints), 1400–1499 AD (47 gridpoints)10

and 1700–1799 AD (112 gridpoints). Each panel of Fig. 3 shows the 100 yr time se-
ries of the hemispheric mean temperature for one specific choice of truth run (blue
line) and the estimated reconstruction (red line, with one standard deviation uncer-
tainty bounds). The truth run is identical for each panel, the only differences between
these experiments being the location and number of pseudoproxy data points used in15

the estimation, and the randomly sampled proxy errors. The correlation between pos-
terior mean and target time series for each epoch, averaged over all experiments, is
presented for each panel. All of these values are highly significant, with the correla-
tion never being negative in any individual experiment. However, it can also be seen
in the top two panels that for these small numbers of data points, the posterior is lit-20

tle changed from the climatological prior (which has a spread of about ±0.2 around
its mean of zero). As the data volume increases in the lower two panels, the pos-
terior converges towards the target, but even with the maximum number of 112 data
points, substantial discrepancies can easily be seen. While the correlations seem high,
the RMS difference between posterior mean and target are only slightly reduced com-25

pared to the climatological prior, with the reduction in RMS error increasing from 4 %
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to 23 % as the data density increases. Therefore, it seems that the use of correlation
as compared to residual RMS error gives a rather different impression of the level of
performance. There is certainly some measurable skill even with the smallest number
of data points, but there is also substantial discrepancy between the reconstruction and
the target for any given year.5

It is also apparent that the temporal variability of the posterior mean is substan-
tially lower than that of the target. This loss of variance, which may be unwelcome
in some contexts (such as when we wish to use climate reconstructions to estimate
the natural variability of the system), is an inevitable consequence of the paradigm of
error-minimising estimation. At least within this Bayesian paradigm, any attempt to pre-10

serve the temporal variance of the target in the reconstruction (e.g. Christiansen and
Ljungqvist, 2011) cannot simultaneously generate annual error-minimising estimates of
the climatic state, since such an estimate will necessarily be shrunk towards the prior
mean. Hence, it is important to be clear about both the goals of such an estimation,
and the interpretation of the results.15

The effective posterior ensemble sizes for the four panels (calculated via the stan-
dard formula Nef =1/

∑
w2
i where wi are the normalised weights on the ensemble) are

around 4100 for the first panel, then 1800, 170 and 18 for the remaining panels, re-
spectively. The very large effective ensemble sizes for the first two panels, which are
a large fraction of the prior sample size of 10 000, are an indication that the limited and20

imprecise proxy data available in these epochs do not distinguish very clearly between
the prior samples, consistent with the relatively poor representation of the target by
the posterior. Conversely, an ensemble as small as 18 members implies that in this
case the observations are restricting the posterior to a small subset of the prior. In
this case, however, sampling uncertainty may be becoming a significant factor, as 1825

samples cannot be expected to accurately characterise the true posterior. However,
the situation is still far less serious than seems to be the case for modern numerical
weather prediction, where a prior sample size of 10 000 is argued to be completely
inadequate (Bengtsson et al., 2008; Snyder et al., 2008).
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As well as reconstructing the hemispheric mean temperature, we can examine how
well the method reconstructs the spatial field of temperature anomalies. This result
is presented in Fig. 4, where the results are presented in terms of the error on the
posterior mean. These results are normalised relative to the error of the prior mean,
meaning that the posterior is more accurate than the prior when the value drops below5

unity. There is a widespread reduction in error over large areas for all epochs. In the
first two panels, however, this reduction in error appears very modest over much of the
Northern Hemisphere, only dropping below the 90 % level in the immediate neighbour-
hood of the data points (consistent with Fig. 1). The third panel shows larger areas
with substantial error reduction spreading for some distance away from the observa-10

tions. Even in this case, there are large areas with marginal change, but it seems likely
that the small regions where the error is actually greater than 1 are due to noise given
the finite sample from which these statistics were calculated. The final panel, however,
shows a much larger region over the tropical ocean where the error of the posterior is
consistently greater than that of the prior. This is a clear indication of sampling error15

due to the posterior ensemble being too small. It is notable that even though Fig. 3 indi-
cates that this experiment has skill in reproducing the hemispheric mean temperature
anomaly, there are large regions where the reconstruction actually has negative skill.
These results are in no way mutually inconsistent, as the local errors in the skill-free
regions will tend to average out in the hemispheric mean, allowing the skillfull area to20

impart some genuine signal into the reconstruction. They do, however, suggest that
care is required in interpreting what, if anything, can be learnt about the climate on
a regional basis, especially at some distance from observations. These results support
those of Smerdon et al. (2012) who also showed that the skill of a large-scale mean
does not necessarily translate into good performance on the regional scale.25

4.2 Predictive performance

Returning to the potential of data assimilation methods to improve skill though tem-
poral smoothing, we can also consider the forecast skill arising from the use of the
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posterior estimate as initial conditions (prior) for the prediction of the following year.
The skill (not shown here) is essentially zero for the first three cases. In these cases
the rather uncertain estimates have basically reverted to the climatological prior. In
the final case where the ensemble has started to collapse, its forecast skill is actu-
ally negative over almost the entire hemisphere, due to small-sample noise. Thus, it5

does not seem that any sequential based or smoothing method will generate additional
skill in reconstructions with this data set. This is perhaps not entirely surprising given
that modern interannual prediction systems show very limited skill unless substantial
volumes of ocean data are assimilated (e.g. Dunstone and Smith, 2010). However, it
remains possible that proxy-based reconstructions which use ocean-based data (such10

as coral records), or other data which exhibits some clear multiyear predictability, could
benefit from such an approach.

4.3 Forced response

In the experiments described in Sect. 4.1, forcing was held constant and thus the pro-
cedure only accounted for the internal variability of the model. While this allowed us to15

take an off-line approach to the calculations, it ignores the externally-forced component,
which is of substantial importance in real applications. Therefore, we now extend the
method to include this aspect, by superimposing an externally forced response onto the
existing ensemble under the assumption that this can be considered linearly additive to
the internally-generated variability of the model. While this is obviously a simplification20

of the real system, it is a routine approximation in (for example) detection and attribution
studies. As our estimate of the pattern of transient response to external forcing, we use
outputs from the CMIP3 models, taking the difference between the ensemble means
of 2070–2090 and 2000–2020 in the A1B simulations. This pattern, which shows the
expected large-scale spatially coherent warming with land-sea contrast and polar am-25

plification, is then scaled to generate the desired forced hemispheric mean temperature
anomaly, and added onto the existing unforced runs. We add a sinusoidal “forced” sig-
nal onto our truth run, with a magnitude of ±0.2 ◦C (reasonably representative of the
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variation seen in temperature reconstructions) and a period of 25 yr. Observational
errors are adjusted according to the total variance at each grid point, to maintain our
chosen signal to noise ratio of 0.4. We also add a forced response onto each year of
the ensemble, with random magnitude of the same variance as that of the signal added
to the truth run.5

Interestingly, despite this (apparent) extra degree of freedom in the ensemble, the
posterior ensemble size is actually fractionally larger than it was in the unforced case.
This may be due to the large-scale forced response dominating some of the small scale
variability to the extent that the effective dimensionality of the problem is if anything de-
creased a little (Bengtsson et al., 2008). The results are shown in Figs. 5 and 6. In10

Fig. 5, the NH mean temperature appears to closely track the target run in the lower
two panels, and even shows some hints of this in the upper two panels where much
less skill was shown in the internal variability case (cf. Fig. 3). These results are re-
flected both in the reduction of RMS error (which ranges from 8 to 34 % across the
experiments) and the correlation of reconstruction with target, which vary from 0.4015

to an impressive level of 0.75. Thus, it appears that it is rather easier to identify the
large-scale variation associated with external forcing, than the smaller-scale variabil-
ity. It is noticeable in Fig. 6 that in all cases, the method has considerable skill in the
tropical region. This may be partly an artefact of the particular climate model we are
using, which has unrealistically low variability in this region. Therefore, despite the po-20

lar amplification of the forced response, it still easily dominates natural variability in the
tropical region, and any skill in reproducing the forced response (which can be seen
in Fig. 5) is strongly reflected in this region. Climate models with more realistic ENSO
variability would probably not generate such strong results in this area. Contrary to the
internal variability experiments, the posterior estimates here do not show much skill in25

the neighbourhood of the observations themselves, where the hemispheric tempera-
ture signal represents a relatively small proportion of the total variance.
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4.4 Sensitivity to observational uncertainty

We now consider the sensitivity of these results to the proxy uncertainty. While a signal-
to-noise ratio of around 0.4 is typical, our implicit assumption of a single proxy record in
each grid cell may be pessimistic. The Mann et al. (2008) proxy network contains over
1200 proxy records, and although fewer than half of these passed screening tests, the5

number of useful proxies is still rather larger than the number of grid cells which contain
any records. We therefore consider a larger signal to noise ratio, to represent the
situation where proxies with independent errors can be averaged to generate a more
accurate signal. We use a signal to noise ratio of 1, which would be appropriate if each
grid cell contained 4 independent proxy records, each of which had an SNR of about10

0.5. We find that the reconstructions have greater skill at earlier times, but the collapse
of the ensemble is also apparent at earlier times and more complete at later times, with
an effective posterior ensemble size of around 2 samples in the most recent epoch.
These results are qualitatively unsurprising, since greater proxy precision is largely
equivalent to a larger number of proxies. The correlation of reconstruction and target15

is also generally higher in these experiments than for the standard case, saturating at
around 0.8 at the point of ensemble collapse.

5 Conclusions

We have investigated the potential of particle-based data assimilation methods for the
reconstruction of Northern-Hemisphere temperatures over the past two millennia, in20

the context of a perfect model and well-characterised proxy uncertainty. We demon-
strate that the method is successful and achieves significant skill as measured by the
correlation between target and reconstruction. However when considered in terms of
residual RMS errors, the performance is less impressive. For few data points, the re-
construction is little changed from the prior, and for a higher data density, the posterior25

ensemble has a tendency to collapse, even when a prior sample size of 10 000 is used.
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The method demonstrates skill in reconstructing the large-scale feature of hemispheric
mean temperature even when many grid-point values have very little or even negative
skill, as the averaging out of this noise allows skillful regions to provide some signal.
These results imply that caution must be applied when interpreting regional features
of reconstructions, since spatial patterns may be substantially less skillful than an as-5

sessment of large-scale performance could suggest. The particle-based method suf-
fers from the requirement for a large sample size to work well, although this problem is
far less severe than has been suggested for modern numerical weather prediction, and
in fact the method retains substantial skill (at least by some measures) even when it
has technically failed due to ensemble collapse. Alternative data assimilation methods10

such as the ensemble Kalman Filter (Bhend et al., 2011) or modified particle filtering
approaches (van Leeuwen, 2010) could offer a way forward in respect of this problem,
but the nature of the sparse and imprecise data places fundamental limitations on our
ability to reconstruct past climatic states.
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Table 1. Number of grid points containing observational data, at 100 yr intervals through the
last two millennia.

50 6
150 7
250 7
350 7
450 8
550 8
650 9
750 10
850 10
950 10

1050 16
1150 22
1250 24
1350 28
1450 47
1550 112
1650 112
1750 112
1850 112
1950 112
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Spatial correlation patterns of annual temperature anomalies

−0.5 −0.25 0 0.25 0.5 0.75 1

Fig. 1. Spatial correlations of annual anomalies at specified grid points (corresponding to the
locations of the longest data time series).
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Fig. 2. Potential predictability. σ2
v/σ

2 for different time scales, where σ2
v is the variance of the

long time scale and σ2 is the total variance. Also indicated are data locations (blue dots) with
the size of the dot proportional to the length of time series available, which ranges between
500 yr (smallest 65 dots) and 2000 yr (largest 6 dots).
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Fig. 3. Reconstruction of NH annual mean temperature anomaly in the case of internal vari-
ability, based on different number of proxy data points. Blue lines indicate target (identical in
each panel). Solid red line indicates reconstruction, with dotted lines showing the ±1 standard
deviation uncertainty. Correlations are averages over multiple experiments for each epoch.
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Fig. 4. Maps of normalised RMS reconstruction error for NH annual mean temperature anoma-
lies in the case of internal variability, based on different number of proxy data points. Errors
are normalised to standard deviation of climatology, with green contour indicating a normalised
error of 1 (i.e. that the reconstruction is neither more nor less accurate on average than the
prior climatological mean).
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Fig. 5. Reconstruction of NH annual mean temperature anomaly for the case of externally
forced changes, based on different number of proxy data points. Blue lines indicate target
(identical in each panel). Solid red line indicates reconstruction, with dotted lines showing the
±1 standard deviation uncertainty. Correlations are averages over multiple experiments for
each epoch.
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Fig. 6. Maps of normalised RMS reconstruction error for NH annual mean temperature anoma-
lies for the case of externally forced changes, based on different number of proxy data points.
Errors are normalised to standard deviation of climatology, with green contour indicating a nor-
malised error of 1 (i.e. that the reconstruction is neither more nor less accurate on average than
the prior climatological mean).
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